Компьютеры и современные гаджеты

Введем понятие элементарной матрицы.

ОПРЕДЕЛЕНИЕ. Квадратная матрица, получающаяся из единичной матрицы в результате неособенного элементарного преобразования над строками (столбцами), называется элементарной матрицей, соответствующей этому преобразованию.

Так, например, элементарными матрицами второго порядка являются матрицы

где А - любой ненулевой скаляр.

Элементарная матрица получается из единичной матрицы Е в результате одного из следующих неособенных преобразований:

1) умножение строки (столбца) матрицы Е на отличный от нуля скаляр;

2) прибавление (или вычитание) к какой-либо строке (столбцу) матрицы Е другой строки (столбца), умноженной на скаляр.

Обозначим через матрицу, получающуюся из матрицы Е в результате умножения строки на ненулевой скаляр А:

Обозначим через матрицу, получающуюся из матрицы Е в результате прибавления (вычитания) к строке строки, умноженной на А;

Через будем обозначать матрицу, получающуюся из единичной матрицы Е в результате применения элементарного преобразования над строками; таким образом, есть матрица, соответствующая преобразованию

Рассмотрим некоторые свойства элементарных матриц.

СВОЙСТВО 2.1. Любая элементарная матрица обратима. Матрица, обратная к элементарной, является элементарной.

Доказательство. Непосредственная проверка показывает, что для любого отличного от нуля скаляра А. и произвольных выполняются равенства

На основании этих равенств заключаем, что имеет место свойство 2.1.

СВОЙСТВО 2.2. Произведение элементарных матриц является обратимой матрицей.

Это свойство непосредственно следует из свойства 2.1 и следствия 2.3.

СВОЙСТВО 2.3. Если неособенное строчечное элементарное преобразование переводит -матрицу А в матрицу В, то . Верно и обрсипное утверждение.

Доказательство. Если есть умножение строки на ненулевой скаляр А, то

Если же , то

Легко проверить, что верно также обратное утверждение.

СВОЙСТВО 2.4. Если матрица С получается из матрицы А при помощи цепочки неособенных строчечных элементарных преобразований , то . Верно и обратное утверждение.

Доказательство. По свойству 2.3, преобразование переводит матрицу А в матрицу переводит матрицу в матрицу и т. д. Наконец, переводит матрицу в матрицу Следовательно, .

Легко проверить, что верно и обратное утверждение. Условия обратимости матрицы. Для доказательства теоремы 2.8 необходимы следующие три леммы.

ЛЕММА 2.4. Квадратная матрица с нулевой строкой (столбцом) необратима.

Доказательство. Пусть А - квадратная матрица с нулевой строкой, В - любая матрица, . Пусть - нулевая строка матрицы А; тогда

т. е. i-я строка матрицы АВ является нулевой. Следовательно, матрица А необратима.

ЛЕММА 2.5. Если строки квадратной матрицы линейно зависимы, то матрица необратима.

Доказательство. Пусть А - квадратная матрица с линейно зависимыми строками. Тогда существует цепочка неособенных строчечных элементарных преобразований, переводящих А в ступенчатую матрицу; пусть такая цепочка. По свойству 2.4 элементарных матриц, имеет место равенство

где С - матрица с нулевой строкой.

Следовательно, по лемме 2.4 матрица С необратима. С другой стороны, если бы матрица А была обратимой, то произведение слева в равенстве (1) было бы обратимой матрицей, как произведение обратимых матриц (см. следствие 2.3), что невозможно. Следовательно, матрица А необратима.

Матричная алгебра - Элементарные преобразования матриц

Элементарные преобразования матриц

Элементарные преобразования матрицы находят широкое применение в различных математических задачах. Например, они составляют основу известного метода Гаусса (метода исключения неизвестных) для решения системы линейных уравнений .

К элементарным преобразованиям относятся:
1) перестановка двух строк (столбцов);
2) умножение всех элементов строки (столбца) матрицы на некоторое число, не равное нулю;
3) сложение двух строк (столбцов) матрицы, умноженных на одно и то же число, отличное от нуля.

Две матрицы называются эквивалентными , если одна из них может быть получена из другой после конечного числа элементарных преобразований. В общем случае эквивалентные матрицы равными не являются, но имеют один и тот же ранг.

Вычисление определителей с помощью элементарных преобразований

С помощью элементарных преобразований легко вычислить определитель матрицы. Например, требуется вычислить определитель матрицы:

где ≠ 0.
Тогда можно вынести множитель :

теперь, вычитая из элементов j - го столбцасоответствующие элементы первого столбца, умноженные на, получим определитель:

который равен: где

Затем повторяем те же действия для и, если все элементы то тогда окончательно получим:

Если для какого-нибудь промежуточного определителя окажется, что его левый верхний элемент , то необходимо переставить строки или столбцы втак, чтобы новый левый верхний элемент был не равен нулю. Если Δ ≠ 0, то это всегда можно сделать. При этом следует учитывать, что знак определителя меняется в зависимости от того, какой элемент является главным (то есть, когда матрица преобразована так, что). Тогда знак соответствующего определителя равен.

П р и м е р. С помощью элементарных преобразований привести матрицу

Элементарные преобразования матрицы - это такие преобразования матрицы , в результате которых сохраняется эквивалентность матриц. Таким образом, элементарные преобразования не изменяют множество решений системы линейных алгебраических уравнений , которую представляет эта матрица.

Элементарные преобразования используются в методе Гаусса для приведения матрицы к треугольному или ступенчатому виду.

Определение

Элементарными преобразованиями строк называют:

В некоторых курсах линейной алгебры перестановка строк матрицы не выделяется в отдельное элементарное преобразование в силу того, что перестановку местами любых двух строк матрицы можно получить, используя умножение любой строки матрицы на константу k {\displaystyle k} , и прибавление к любой строке матрицы другой строки, умноженной на константу k {\displaystyle k} , k ≠ 0 {\displaystyle k\neq 0} .

Аналогично определяются элементарные преобразования столбцов .

Элементарные преобразования обратимы .

Обозначение указывает на то, что матрица A {\displaystyle A} может быть получена из B {\displaystyle B} путём элементарных преобразований (или наоборот).

Свойства

Инвариантность ранга при элементарных преобразованиях

Теорема (об инвариантности ранга при элементарных преобразованиях).
Если A ∼ B {\displaystyle A\sim B} , то r a n g A = r a n g B {\displaystyle \mathrm {rang} A=\mathrm {rang} B} .

Эквивалентность СЛАУ при элементарных преобразованиях

Назовём элементарными преобразованиями над системой линейных алгебраических уравнений :
  • перестановку уравнений;
  • умножение уравнения на ненулевую константу;
  • сложение одного уравнения с другим, умноженным на некоторую константу.
То есть элементарные преобразования над её расширенной матрицей. Тогда справедливо следующее утверждение: Напомним, что две системы называются эквивалентными, если множества их решений совпадают.

Нахождение обратных матриц

Теорема (о нахождении обратной матрицы).
Пусть определитель матрицы A n × n {\displaystyle A_{n\times n}} не равен нулю, пусть матрица B {\displaystyle B} определяется выражением B = [ A | E ] n × 2 n {\displaystyle B=_{n\times 2n}} . Тогда при элементарном преобразовании строк матрицы A {\displaystyle A} к единичной матрице E {\displaystyle E} в составе B {\displaystyle B} одновременно происходит преобразование E {\displaystyle E} к A − 1 {\displaystyle A^{-1}} .

Следующие три операции называют элементарными преобразованиями строк матрицы :

1) Умножение i-й строки матрицы на число λ ≠ 0:

которое будем записывать в виде (i) → λ(i).

2) Перестановка двух строк в матрице, например i-й и k-й строк:


которую будем записывать в виде (i) ↔ (k).

3) Добавление к i-й строке матрицы ее k-й строки с коэффициентом λ:


что будем записывать в виде (i) → (i) + λ(k).

Аналогичные операции над столбцами матрицы называют элементарными преобразованиями столбцов .

Каждое элементарное преобразование строк или столбцов матрицы имеет обратное элементарное преобразование , которое преобразованную матрицу превращает в исходную. Например, обратным преобразованием для перестановки двух строк является перестановка тех же строк.

Каждое элементарное преобразование строк (столбцов) матрицы А можно трактовать как умножение A слева (справа) на матрицу специального вида. Эта матрица получается, если то же преобразование выполнить над единичной матрицей . Рассмотрим подробнее элементарные преобразования строк.

Пусть матрица B получается в результате умножения i-й строки матрицы A типа m×n на число λ ≠ 0. Тогда B = Е i (λ)А, где матрица Е i (λ) получается из единичной матрицы E порядка m умножением ее i-й строки на число λ.

Пусть матрица B получается в результате перестановки i-й и k-й строк матрицы А типа m×n. Тогда B = F ik А, где матрица F ik получается из единичной матрицы E порядка m перестановкой ее i-й и k-й строк.

Пусть матрица B получается в результате добавления к i-й строке матрицы А типа m×n ее k-й строки с коэффициентом λ. Тогда B = G ik (λ)А, где матрица G ik получается из единичной матрицы E порядка m в результате добавления к i-й строке k-й строки с коэффициентом λ, т.е. на пересечении i-й строки и k-го столбца матрицы E нулевой элемент заменен на число λ.

Точно так же реализуются элементарные преобразования столбцов матрицы A, но при этом она умножается на матрицы специального вида не слева, а справа.

С помощью алгоритмов, которые основаны на элементарных преобразованиях строк и столбцов, матрицы можно преобразовывать к различному виду. Один из важнейших таких алгоритмов составляет основу доказательства следующей теоремы.

Теорема 10.1. С помощью элементарных преобразований строк любую матрицу можно привести к ступенчатому виду .

◄ Доказательство теоремы состоит в построении конкретного алгоритма приведения матрицы к ступенчатому виду. Этот алгоритм состоит в многократном повторении в определенном порядке трех операций, связанных с некоторым текущим элементом матрицы, который выбирается исходя из расположения в матрице. На первом шаге алгоритма в качестве текущего элемента матрицы выбираем верхний левый, т.е. [A] 11 .

1*. Если текущий элемент равен нулю, переходим к операции 2*. Если же он не равен нулю, то строку, в которой расположен текущий элемент (текущую строку), добавляем с соответствующими коэффициентами к строкам, расположенным ниже, так, чтобы все элементы матрицы, стоящие в столбце под текущим элементом, обратились в нуль. Например, если текущий элемент есть [A] ij , то в качестве коэффициента для k-й строки, k = i + 1, ... , нам следует взять число - [A] kj /[A] ij . Выбираем новый текущий элемент, смещаясь в матрице на один столбец вправо и на одну строку вниз, и переходим к следующему шагу, повторяя операцию 1*. Если такое смещение невозможно, т.е. достигнут последний столбец или строка, преобразования прекращаем.

2*. Если текущий элемент в некоторой строке матрицы равен нулю, то просматриваем элементы матрицы, расположенные в столбце под текущим элементом. Если среди них нет ненулевых, переходим к операции 3*. Пусть в k-й строке под текущим элементом находится ненулевой элемент. Меняем местами текущую и k-ю строки и возвращаемся к операции 1*.

3*. Если текущий элемент и все элементы под ним (в том же столбце) равны нулю, меняем текущий элемент, смещаясь в матрице на один столбец вправо. Если такое смещение возможно, т. е. текущий элемент находится не в самом правом столбце матрицы, то повторяем операцию 1* . Если же мы уже достигли правого края матрицы и смена текущего элемента невозможна, то матрица имеет ступенчатый вид, и мы можем прекратить преобразования.

Так как матрица имеет конечные размеры , а за один шаг алгоритма положение текущего элемента смещается вправо хотя бы на один столбец, процесс преобразований закончится, причем не более чем за n шагов (n - количество столбцов в матрице). Значит, наступит момент, когда матрица будет иметь ступенчатый вид.

Пример 10.10. Преобразуем матрицу к ступенчатому виду с помощью элементарных преобразований строк.

Используя алгоритм из доказательства теоремы 10.1 и записывая матрицы после окончания выполнения его операций, получаем

Элементарными преобразованиями называют следующие действия над строками и столбцами матрицы A:

1) перестановку местами двух строк или столбцов матрицы;

2) умножение строки или столбца матрицы на число, отличное от нуля;

3) прибавление к одной строке (столбцу) другой строки (столбца).

Теорема. Элементарные преобразования не меняют ранг матрицы, то есть, если матрица B получена из матрицы A элементарными преобразованиями, то.

Доказательство. 1). При перестановке местами двух столбцов матрицы максимальное число линейно независимых столбцов не меняется, а значит, не меняется и её ранг.

2). Пусть матрица Bполучена из матрицыAумножениемi- ой строки на числоt0 иr(A) =k. Очевидно, любой минор матрицыB, не содержащийi- тую строку, равен соответствующему минору матрицыA, а любой минор матрицыB, содержащийi-тую строку, равен соответствующему минору матрицыAумноженному на числоt. Следовательно, минор порядкаkматрицыB, соответствующий базисному минору матрицыA, будет отличен от нуля, а все миноры порядкаk+1 матрицыB, как и все миноры порядкаk+1 матрицыA, будут равны нулю. А это значит, чтоr(B)=k=r(A).

3). Пусть матрица Bполучена из матрицыAприбавлениемi- ой строки кj-той строке иr(A) =k. Миноры порядкаk+1 матрицыB, не содержащиеj-тую строку, будут равны соответствующим минорам матрицыA, и поэтому равны нулю. Миноры порядкаk+1 матрицыB, содержащиеi- тую иj-тую строки, будут равны сумме двух нулевых определителей. Один из этих определителей содержит две одинаковых строки (вj-той строке расположены элементыi–той строки), а второй определитель является минором порядкаk+1 матрицыAи поэтому равен нулю. Миноры порядкаk+1 матрицыB, содержащиеj-тую строку, но не содержащиеi-тую строку, будут равны сумме двух миноров порядкаk+1 матрицыAи поэтому тоже будут равны нулю. Следовательно, все миноры порядкаk+1 матрицыBравны 0 иr(B)k=r(A).

Пусть матрица Cполучена из матрицыBумножениемi–той строки на (-1). Тогда матрицаAполучается из матрицыCприбавлениемi–той строки кj-той строке и умножениемi–той строки на (-1). Следовательно, как было доказано выше, будетr(A)r(C) =r(B). Таким образом, одновременно справедливы неравенстваr(B)r(A) иr(A)r(B) откуда следует, чтоr(A) =r(B).

Это свойство элементарных преобразований используют на практике для вычисления ранга матрицы. Для этого, при помощи элементарных преобразований, приводят данную (ненулевую) матрицу A к трапецевидной форме, то есть к виду

B = ,

где элементы для всех i = 1,2,...,k; элементыдля всех i > j и

i > k. Очевидно, что r(B) = k, то есть ранг матрицы Bравен числу ненулевых строк. Это следует из того, что минор порядка k матрицыB, расположенный на пересечении первых k строк и столбцов, является определителем диагонального вида и равен; а любой минор порядка k+1 матрицы В содержит нулевую строку, а значит, равен 0 (либо, если k = n, таких миноров нет вообще).

Теорема. Любую ненулевую матрицуAразмерностиmnможно привести к трапецевидной форме при помощи элементарных преобразований.

Доказательство. Так какA0, то существует элемент матрицы
. Переставив местами первую иi-тую строки, первый иj-тый столбцы, переместим элементв левый верхний угол матрицы и обозначим
. Затем кi-той строке полученной матрицы (i= 2,3, …,m) прибавим первую строку, умноженную на число. В результате этих элементарных преобразований получим матрицу

A
.

Если все элементы
матрицыAравны нулю, то теорема доказана. Если же существует элемент
, то, перестановкой второй иi-той строк, второго иj-того столбцов матрицыA, переместим элементна место элементаи обозначим
(если
, тогда сразу обозначим
). Затем кi-той строке полученной матрицы (i= 3, …,m) прибавим вторую строку, умноженную на число. В результате получим матрицу


.

Продолжив этот процесс, за конечное число шагов получим матрицу B, то есть приведем матрицуAк трапецевидной форме.

Пример. Вычислим ранг матрицы

. Стрелками обозначены следующие элементарные преобразования: 1) переставили местами первую и вторую строки; 2) прибавили к четвертой строке третью; 3) прибавили к третьей строке первую, умноженную на -2, и четвертую строку поделили на 3; 4) поделили третью строку на 5 и переставили местами третью и четвертую строки; 5) к третьей строке, умноженной на -3, прибавили вторую строку и к четвертой строке прибавили третью. Видно, что матрица, полученная из матрицы А указанными элементарными преобразованиями, имеет трапецевидную форму с тремя ненулевыми строками. Следовательно, r(A) = 3.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Компьютеры и современные гаджеты