Компьютеры и современные гаджеты

Сложной электрической цепью называют цепь с несколькими замкнутыми контурами, с любым размещением в ней источников питания и потребителей, которую нельзя свести к сочетанию последовательных и параллельных соединений.

Основными законами для расчета цепей наряду с законом Ома являются два закона Кирхгофа, пользуясь которыми, можно найти распределение токов и напряжений на всех участках любой сложной цепи.

В § 2-15 мы ознакомились с одним методом расчета сложных цепей, методом наложения.

Сущность этого метода заключается в том, что ток в какой-либо ветви является алгебраической суммой токов, создаваемых в ней всеми поочередно действующими э. д. с. цепи.

Рассмотрим расчет сложной цепи методом узловых и контурных уравнений или уравнений по законам Кирхгофа.

Для нахождения токов во всех ветвях цепй необходимо знать сопротивления ветвей, а также величины и направления всех э. д. с.

Перед составлением уравнений по законам Кирхгофа следует произвольно задаться направлениями токов в ветвях, показав их на схеме стрелками. Если выбранное направление тока в какой-либо ветви противоположно действительному, то после решения уравнений этот ток получается со знаком минус.

Число необходимых уравнений равно числу неизвестных токов; число уравнений, составляемых по первому закону Кирхгофа, должно быть на единицу меньше числа узлов цепи, остальные уравнения составляются по второму закону Кирхгофа. При составлении уравнений по второму закону Кирхгофа следует выбирать наиболее простые контуры, причем каждый из них должен содержать хотя бы одну ветвь, не входившую в ранее составленные уравнения.

Расчет сложной цепи с применением двух уравнений Кирхгофа рассмотрим на примере.

Пример 2-12. Вычислить токи во всех ветвях цепи рис. 2-11, если э. д. с. источников , а сопротивления ветвей .

Внутренними сопротивлениями источников пренебречь.

Рис. 2-11. Сложная электрическая цепь с двумя источниками питания.

Выбранные произвольно направления токов в ветвях показаны на рис. 2-11.

Так как число неизвестных токов три, то необходимо составить три уравнения.

При двух узлах цепи необходимо одио узловое уравнение. Напишем его для точки В:

4 Второе уравнение напишем, обходя по направлению движения часовой стрелки контур АБВЖЗА,

Третье уравнение напишем, обходя по направлению движения часовой стрелки контур АГВЖЗА,

Заменив в уравнениях (2-49) и (2-50) буквенные обозначения числовыми значениями, получим:

Заменив в последнем уравнении ток его выражением уравнения (2-48), получим;

Умножив уравнение (2-52а) на 0,3 и сложив с уравнением (2-51), получим.

Является определение некоторых параметров на основе исходных данных, из условия задачи. На практике используют несколько методов расчёта простых цепей. Один из них базируется на применении эквивалентных преобразований, позволяющих упростить цепь.

Под эквивалентными преобразованиями в электрической цепи подразумевается замена одних элементов другими таким образом, чтобы электромагнитные процессы в ней не изменились, а схема упрощалась. Одним из видов таких преобразований является замена нескольких потребителей, включённых последовательно или параллельно, одним эквивалентным.

Несколько последовательно соединённых потребителей можно заменить одним, причём его эквивалентное сопротивление равно сумме сопротивлений потребителей, . Для n потребителей можно записать:

rэ = r1 +r2+…+rn ,

где r1 , r2, ..., rn – сопротивления каждого из n потребителей.

При параллельном соединении n потребителей эквивалентная проводимость gэ равна сумме проводимостей отдельных элементов, включённых параллельно:

gэ= g1 + g2 +…+ gn .

Учитывая, что проводимость является обратной величиной по отношению к сопротивлению, можно эквивалентное сопротивление определить из выражения:

1/rэ = 1/r1 + 1/r2 +…+ 1/rn,

где r1, r2, ..., rn – сопротивления каждого из n потребителей, включённых параллельно.

В частном случае, когда параллельно включены два потребителя r1 и r2, эквивалентное сопротивление цепи:

rэ = (r1 х r2)/(r1 + r2)

Преобразования в сложных цепях, где отсутствует в явном виде элементов (рисунок 1), начинают с замены элементов, включённых в исходной схеме треугольником, на эквивалентные элементы, соединённые звездой.

Рисунок 1. Преобразование элементов цепи: а - соединённых треугольником, б - в эквивалентную звезду

На рисунке 1, а треугольник элементов образуют потребители r1, r2, r3. На рисунке 1, б этот треугольник заменён эквивалентными элементами ra, rb, rc, соединёнными звездой. Чтобы не происходило изменение потенциалов в точках a, b, с схемы, сопротивления эквивалентных потребителей определяются из выражений:

Упрощение исходной цепи можно также осуществить заменой элементов, соединённых звездой, схемой, в которой потребители .

В схеме, изображённой на рисунке 2, а, можно выделить звезду, образованную потребителями r1, r3, r4. Эти элементы включены между точками c, b, d. На рисунке 2, б между этими точками находятся эквивалентные потребители rbc, rcd, rbd, соединённые треугольником. Сопротивления эквивалентных потребителей определяются из выражений:

Рисунок 2. Преобразование элементов цепи: а - соединённых звездой, б - в эквивалентный треугольник

Дальнейшее упрощение схем, приведённых на рисунках 1, б и 2, б, можно осуществлять путём замены участков с последовательным и параллельным соединением элементов их эквивалентными потребителями.

При практической реализации метода расчёта простой цепи с помощью преобразований выявляются в цепи участки с параллельным и последовательным соединением потребителей, а затем рассчитываются эквивалентные сопротивления этих участков.

Если в исходной цепи в явном виде нет таких участков, то, применяя описанные ранее переходы от треугольника элементов к звезде или от звезды к треугольнику, проявляют их.

Данные операции позволяют упростить цепь. Применив их несколько раз, приходят к виду с одним источником и одним эквивалентным потребителем энергии. Далее, применяя , рассчитывают токи и напряжения на участках цепи.

Расчет сложных цепей постоянного тока

В ходе расчёта сложной цепи необходимо определить некоторые электрические параметры (в первую очередь токи и напряжения на элементах) на основе исходных величин, заданных в условии задачи. На практике используются несколько методов расчёта таких цепей.

Для определения токов ветвей можно использовать: метод, базирующийся на основании непосредственного применения , метод узловых напряжений.

Для проверки правильности вычисления токов необходимо составить . Из следует, что алгебраическая сумма мощностей всех источников питания цепи равна арифметической сумме мощностей всех потребителей.

Мощность источника питания равна произведению его ЭДС на величину тока, протекающего через данный источник. Если направление ЭДС и тока в источнике совпадают, то мощность получается положительной. В противном случае она отрицательна.

Мощность потребителя всегда положительна и равна произведению квадрата тока в потребителе на величину его сопротивления.

Математически баланс мощностей можно записать в следующем виде:

где n – количество источников питания в цепи; m – количество потребителей.

Если баланс мощностей соблюдается, то расчет токов выполнен правильно.

В процессе составления баланса мощностей можно выяснить, в каком режиме работает источник питания. Если его мощность положительна, то он отдает энергию во внешнюю цепь (например, как аккумулятор в режиме разряда). При отрицательном значении мощности источника последний потребляет энергию из цепи (аккумулятор в режиме заряда).

Законы Кирхгофа.

∑I=0

∑E=∑IR

Порядок расчета

  1. Произвольно выбираем направление тока в ветвях.
  2. Произвольно выбираем направление обхода контуров.
  3. Зная полярность источников, проставляем направление ЭДС.
  4. Составляем уравнения по первому закону Кирхгофа. Их должно быть но одно меньше, чем узлов.
  5. Составляем уравнения по второму закону Кирхгофа из расчета, что общее число уравнений должно быть равно числу неизвестных токов.
  6. Решаем систему уравнений и определяем неизвестные токи. Если в результате решения какой-либо ток окажется со знаком «-», то направление его противоположно выбранному.

Приведем пример.

Дано:

  1. 1 =r 2 =0;
  2. 1 =0,3 Ом;
  3. 2 =1 Ом;
  4. 3 =24 Ом;

Е 1 =246 В;

Е 2 =230В

Найти:

I 1 ,I 2 ,I 3 .

Решение:

Итак, на схеме рисуем направления токов (1), согласно этим направлениям рисуем направления обхода контуров (2), согласно полярности источников питания ставим направления ЭДС (3).

Согласно первому закону Кирхгофа:

I 1 -I 2 -I 3 =0 → -I 2 =I 3 -I 1

Теперь составляем уравнения по второму закону Кирхгофа:

E 1 =I 1 R 1 +I 3 R 3

Е 2 =-I 2 R 2 +I 3 R 3

Получили систему из трех уравнений. Решаем.

E 2 =(I 3 -I 1)R 2 +I 3 R 3

230=I 3 (1+R 3)-I 1 =25I 3 -I 1 → I 1 = 25I 3 -230

E 1 =I 1 R 1 +I 3 R 3 =(25I 3 -230)R 1 +I 3 R 3

246=0,3(25I 3 -230)+24I 3

246=7,5I 3 -69+24I 3

31,5I 3 =315

I 3 =10A

I 1 =25∙10-230=20A

I 2 =I 1 -I 3 =20-10=10A

2. Метод контурных токов

Этот метод основан на законе Кирхгофа

  1. Произвольно выбираем направления контурных токов (рис.2)
  2. Составляем уравнения по второму закону Кирхгофа.

E 1 -E 2 =I 1 (R 1 +R 2)-I 2 R 2

E 2 =I 2 (R 2 +R 3)-I 1 R 2

246-230=I 1 (0,3+1)-I 2 → 16=1,3I 1 -I 2 → I 2 =1,3I 1 -16

230=25(1,3I 1 -16)-I 1

31,5I 1 =630

I 1 =20A

I 2 =1,3∙20-16=10A

3. Определяем истинные токи.

I 1 =I 1 =20A

I 2 =I 1 -I 2 =10A

I 3 =I 2 =10A

3. Метод двух узлов

Этот метод применим для схем, имеющих два узла

  1. Выбираем произвольно направления токов в ветвях в одну и ту-же сторону (см. рис.3 - стрелки со штрихами).
  2. Определяем проводимости ветвей:

Q 1 =1/R 1 =1/0,3=3,33 Сим.

Q 2 =1/R 2 =1 Сим.

Q 3 =1/R 3 =1/24=0,0416 Сим.

  1. Определяем напряжение между двумя узлами по формуле:

U=∑E q /∑ ar q=(E 1 +E 2 q 2)/(q 1 +q 2 +q 3)=(246∙3,31+230)/4,3716=240 В

  1. Определяем токи в ветвях

I=(E-U)q

I 1 =(E 1 -U)q 1 =(246-240)3,33=20A

I 2 =(E 2 -U)q 2 =230-240=-10A

I 3 =-Uq 3 =240∙0,0416=-10А

Так как, значения I 2 и I 3 получились отрицательными, то эти токи будут противоположными по направлению (на рисунке показаны жирные сплошные стрелки).

4. Метод наложения или метод суперпозиции

Метод основан на том, что любой ток в цепи создается совместным действием всех источников питания. Поэтому можно рассчитать частичные токи от действия каждого источника питания отдельно, а затем, найти истинные токи как арифметическую составляющую частичных.

Решение

1. Рис. 4. Е 2 =0; r 2 ≠0

R э =R 2 R 3 /(R 2 +R 3)+R 1 =24/25+0,3=0,96+0,3=1,26 Ом

I’ 1 =E 1 /R э =246/1,26=195,23 Ом

U ab =I’ 1 R 23 =195,23∙0,96=187,42 В

I’ 2 =U ab /R 2 =187,42 A

I’ 3 = U ab /R 3 =187,42/24=7,8 A

2. Рис. 5. E 1 =0; R 1 ≠0

R э =R 1 R 3 /(R 1 +R 3)+R 2 =0,3∙24/24,3+1=0,29+1=1,29 Ом

I” 2 =E 2 /R э =230/1,29=178,29 A

U ab =I” 2 R 13 =178,29∙0,29=51,7 В

I” 1 =U ab /R 1 =51,7/0,3=172,4 A

I” 3 =U ab /R 3 =51,7/24=2,15 A

3. Определяем истинные токи.

I 1 =I’ 1 -I” 1 =195,23-172,4=22,83 A

I 2 =I’ 2 -I” 2 =187,42-178,29=9,13 A

I 3 =I’ 3 -I” 3 =7,8-2,15=5,65 A

Основы > Задачи и ответы > Постоянный электрический ток

Методы расчета цепей постоянного тока


Цепь состоит из ветвей, имеет узлов и источников тока. Приводимые далее формулы пригодны для расчета цепей, содержащих и источники напряжения и источники тока. Они справедливы и для тех частных случаев: когда в цепи имеются только источники напряжения или только источники тока.

Применение законов Кирхгофа. Обычно в цепи известны все источники ЭДС и источники токов и все сопротивления. В этом случае устанавливается число неизвестных токов, равное . Для каждой ветви задаются положительным направлением тока.
Число У взаимонезависимых уравнений, составляемых по первому закону Кирхгофа, равно числу узлов без единицы. Число взаимонезависимых уравнений, составляемых по второму закону Кирхгофа,

При составлении уравнений по второму закону Кирхгофа следует выбирать независимые контуры, не содержащие источников тока. Общее число уравнений, составляемых по первому и по второму законам Кирхгофа, равно числу неизвестных токов.
Примеры приведены в задачах раздела .

Метод контурных токов (Максвелла). Этот метод позволяет уменьшить количество уравнений системы до числа К, определяемого формулой (0.1.10). Он основан на том, что ток в любой ветви цепи можно представить в виде алгебраической суммы контурных токов, протекающих по этой ветви. При пользовании этим методом выбирают и обозначают контурные токи (по любой ветви должен проходить хотя бы один выбранный контурный ток). Из теории известно, что общее число контурных токов . Рекомендуется выбирать контурных токов так, чтобы каждый из них проходил через один источник тока (эти контурные токи можно считать совпадающими с соответствующими токами источников тока и они обычно являются заданными условиями задачи), а оставшиеся контурных токов выбирать проходящими по ветвям, не содержащим источников тока. Для определения последних контурных токов по второму закону Кирхгофа для этих контуров составляют К уравнений в таком виде:



где - собственное сопротивление контура n (сумма сопротивлений всех ветвей, входящих в контур n ); - общее сопротивление контуров n и l , причем , если направления контурных токов в общей ветви для контуров n и l совпадают, то положительно , в противном случае отрицательно ; - алгебраическая сумма ЭДС, включенных в ветви, образующие контур n; - общее сопротивление ветви контура n с контуром, содержащим источник тока .
Примеры приведены в задачах раздела .

Метод узловых напряжений. Этот метод позволяет уменьшить количество уравнений системы до числа У, равного количеству узлов без одного

Сущность метода заключается в том, что вначале решением системы уравнений (0.1.13) определяют потенциалы всех узлов схемы, а токи ветвей, соединяющих узлы, находят с помощью закона Ома.
При составлении уравнений по методу узловых напряжений вначале полагают равным нулю потенциал какого-либо узла (его называют базисным). Для определения потенциалов оставшихся узлов составляется следующая система уравнений:


Здесь - сумма проводимостей ветвей, присоединенных к узлу s; - сумма проводимостей ветвей, непосредственно соединяющих узел s с узлом q ; - алгебраическая сумма произведений ЭДС ветвей, примыкающих к узлу s , на их проводимости; при этом со знаком « + » берутся те ЭДС, которые действуют в направлении узла s, и со знаком «-» - в направлении от узла s; - алгебраическая сумма токов источников тока, присоединенных к узлу s; при этом со знаком « + » берутся те токи, которые направлены к узлу s , а со знаком « -» - в направлении от узла s.
Методом узловых напряжений рекомендуется пользоваться в тех случаях, когда число уравнений меньше числа уравнений, составленных по методу контурных токов.
Если в схеме некоторые узлы соединяются идеальными источниками ЭДС, то число У уравнений, составляемых по методу узловых напряжений, уменьшается:

где - число ветвей, содержащих только идеальные источники ЭДС.
Примеры приведены в задачах раздела .
Частный случай-двухузловая схема. Для схем, имеющих два узла (для определенности узлы а и
b ), узловое напряжение

где - алгебраическая сумма произведений ЭДС ветвей (ЭДС считаются положительными, если они направлены к узлу а, и отрицательными, если от узла а к узлу b ) на проводимости этих ветвей; - токи источников тока (положительны, если они направлены к узлу а, и отрицательны, если направлены от узла а к узлу b ) ; - сумма проводимостей всех ветвей, соединяющих узлы а и b .


Принцип наложения. Если в электрической цепи заданными значениями являются ЭДС источников и токи источников тока, то расчет токов на основании принципа наложения состоит в следующем. Ток в любой ветви можно рассчитать как алгебраическую сумму токов, вызываемых в ней ЭДС каждого источника ЭДС отдельно и током, проходящим по этой же ветви от действия каждого источника тока. При этом надо иметь в виду, что когда ведется расчет токов, вызванных каким-либо одним источником ЭДС или тока, то остальные источники ЭДС в схеме заменяются короткозамкнутыми участками, а ветви с источниками тока остальных источников отключаются (ветви с источниками тока размыкаются).

Эквивалентные преобразования схем. Во всех случаях преобразования замена одних схем другими, им эквивалентными, не должна привести к изменению токов или напряжений на участках цепи, не подвергшихся преобразованию.
Замена последовательно соединенных сопротивлений одним эквивалентным. Сопротивления соединены последовательно, если они обтекаются одним и тем же током (например, сопротивления
соединены последовательно (см. рис. 0.1,3), также последовательны сопротивления ).
n последовательно соединенных сопротивлений, равно сумме этих сопротивлений

При последовательном соединении n сопротивлений напряжения на них распределяются прямо пропорционально этим сопротивлениям

В частном случае двух последовательно соединенных сопротивлений

где U - общее напряжение, действующее на участке цепи, содержащем два сопротивления (см. рис. 0.1.3).
Замена параллельно соединенных сопротивлений одним эквивалентным. Сопротивления соединены параллельно, если вес они присоединены к одной парс узлов, например, сопротивления
(см. рис. 0.1.3).
Эквивалентное сопротивление цепи, состоящей из
n параллельно соединенных сопротивлений (рис. 0.1.4),


В частном случае параллельного соединения двух сопротивлений эквивалентное сопротивление

При параллельном соединении n сопротивлений (рис. 0.1.4, а) токи в них распределяются обратно пропорционально их сопротивлениям или прямо пропорционально их проводимостям

Ток в каждой из них вычисляется через ток I в неразветвленной части цепи

В частном случае двух параллельных ветвей (рис. 0.1.4, б)

Замена смешанного соединения сопротивлений одним эквивалентным. Смешанное соединение это сочетание последовательного и параллельного соединений сопротивлений. Например, сопротивления (рис. 0.1.4, б) соединены смешанно. Их эквивалентное сопротивление

Формулы преобразования треугольника сопротивлений (рис. 0.1.5, а) в эквивалентную звезду сопротивлений (рис. 0.1.5, б), и наоборот, имеют такой вид:

Метод эквивалентного источника (метол активного двухполюсника, или метод холостого хода и короткого замыкания). Применение метода целесообразно для определения тока в какой-либо одной ветви сложной электрической цепи. Рассмотрим два варианта: а) метод эквивалентного источника ЭДС и б) метод эквивалентного источника тока.
При методе эквивалентного источника ЭДС для нахождения тока I в произвольной ветви ab, сопротивление которой R (рис. 0.1.6, а , буква А означает активный двухполюсник), надо эту ветвь разомкнуть (рис. 0.1.6, б), а часть цепи, подключенную к этой ветви, заменить эквивалентным источником с ЭДС и внутренним сопротивлением (рис. 0.1.6, в).
ЭДС
этого источника равняется напряжению на зажимах разомкнутой ветви (напряжение холостого хода):

Расчет схем в режиме холостого хода (см. рис. 0.1.6, б) для определения проводится любым известным методом.
Внутреннее сопротивление
эквивалентного источника ЭДС равняется входному сопротивлению пассивной цепи относительно зажимов а и b исходной схемы, из которой исключены все источники [источники ЭДС заменены короткозамкнутыми участками, а ветви с источниками тока отключены (рис. 0.1.6, г); буква П указывает на пассивный характер цепи], при разомкнутой ветви ab. Сопротивление можно вычислить непосредственно по схеме рис. 0.1.6, г.
Ток в искомой ветви схемы (рис. 0.1.6, д), имеющей сопротивление R, определяют по закону Ома:

Изложение методов расчета и анализа электрических цепей, как правило, сводится к нахождению токов ветвей при известных значениях ЭДС и сопротивлений.

Рассматриваемые здесь методы расчета и анализа электрических цепей постоянного тока пригодны и для цепей переменного тока.

2.1 Метод эквивалентных сопротивлений

(метод свертывания и развертывания цепи).

Этот метод применяется только для электрических цепей содержащих один источник питания. Для расчета, отдельные участки схемы, содержащие последовательные или параллельные ветви, упрощают, заменяя их эквивалентными сопротивлениями. Таким образом, цепь свертывается до одного эквивалентного сопротивления цепи подключенного к источнику питания.

Затем определяется ток ветви, содержащий ЭДС, и схема разворачивается в обратном порядке. При этом вычисляются падения напряжений участков и токи ветвей. Так, например, на схеме 2.1 А Сопротивления R 3 и R 4 включены последовательно. Эти два сопротивления можно заменить одним, эквивалентным

R 3,4 = R 3 + R 4

После такой замены получается более простая схема(Рис.2.1Б ).

Здесь следует обратить внимание на возможные ошибки в определении способа соединений сопротивлений. Например сопротивления R 1 и R 3 нельзя считать соединенными последовательно, также как сопротивления R 2 и R 4 нельзя считать соединенными параллельно, т. к. это не соответствует основным признакам последовательного и параллельного соединения.

Рис 2.1 К расчету электрической цепи методом

Эквивалентных сопротивлений.

Между сопротивлениями R 1 и R 2 , в точке В , имеется ответвление с током I 2 .поэтому ток I 1 Не будет равен току I 3 , таким образом сопротивления R 1 и R 3 нельзя считать включенными последовательно. Сопротивления R 2 и R 4 с одной стороны присоединены к общей точке D , а с другой стороны — к разным точкам В и С. Следовательно, напряжение, приложенное к сопротивлению R 2 и R 4 Нельзя считать включенными параллельно.

После замены сопротивлений R 3 и R 4 эквивалентным сопротивлением R 3,4 и упрощением схемы (Рис. 2.1 Б ), более наглядно видно, что сопротивления R 2 и R 3,4 соединены параллельно и их можно заменить одним эквивалентным, исходя из того, что при параллельном соединении ветвей общая проводимость равна сумме проводимостей ветвей:

GBD = G 2 + G 3,4 , Или = + Откуда

RBD =

И получить еще более простую схему (Рис 2.1,В ). В ней сопротивления R 1 , RBD , R 5 соединены последовательно. Заменив эти сопротивления одним, эквивалентным сопротивлением между точками A и F , получим простейшую схему (Рис 2.1, Г ):

RAF = R 1 + RBD + R 5 .

В полученной схеме можно определить ток в цепи:

I 1 = .

Токи в других ветвях нетрудно определить переходя от схемы к схеме в обратном порядке. Из схемы на рисунке 2.1 В Можно определить падение напряжения на участке B , D цепи:

UBD = I 1 ·RBD

Зная падение напряжения на участке между точками B и D можно вычислить токи I 2 и I 3 :

I 2 = , I 3 =

Пример 1. Пусть (Рис 2.1 А ) R 0 = 1 Ом; R 1 =5 Ом; R 2 =2 Ом; R 3 =2 Ом; R 4 =3 Ом; R 5 =4 Ом; Е =20 В. Найти токи ветвей, составить баланс мощностей.

Эквивалентное сопротивление R 3,4 Равно сумме сопротивлений R 3 и R 4 :

R 3,4 = R 3 + R 4 =2+3=5 Ом

После замены (Рис 2.1 Б ) вычислим эквивалентное сопротивление двух параллельных ветвей R 2 и R 3,4 :

RBD = ==1,875 Ом,

И схема еще упростится (Рис 2.1 В ).

Вычислим эквивалентное сопротивление всей цепи:

R Экв = R 0 + R 1 + RBD + R 5 =11,875 Ом.

Теперь можно вычислить общий ток цепи, т. е. вырабатываемый источником энергии:

I 1 = =1,68 А.

Падение напряжения на участке BD будет равно:

UBD = I 1 · RBD =1,68·1,875=3,15 В.

I 2 = = =1,05 А; I 3 ===0,63 А

Составим баланс мощностей:

Е· I1= I12 · (R0+ R1+ R5) + I22 · R2+ I32 · R3,4 ,

20·1,68=1,682·10+1,052·3+0,632·5 ,

33,6=28,22+3,31+1,98 ,

Минимальное расхождение обусловлено округлением при вычислении токов.

В некоторых схемах нельзя выделить сопротивлений включенных между собой последовательно или параллельно. В таких случаях лучше воспользоваться другими универсальными методами, которые можно применить для расчета электрических цепей любой сложности и конфигурации.

2.2 Метод законов Кирхгофа.

Классическим методом расчета сложных электрических цепей является непосредственное применение законов Кирхгофа. Все остальные методы расчета электрических цепей исходят из этих фундаментальных законов электротехники.

Рассмотрим применение законов Кирхгофа для определения токов сложной цепи (Рис 2.2) если ее ЭДС и сопротивления заданы.

Рис. 2.2. К расчету сложной электрической цепи для

Определения токов по законам Кирхгофа.

Число независимых токов схемы равно числу ветвей (в нашем случае m=6). Поэтому для решения задачи необходимо составить систему из шести независимых уравнений, совместно по первому и второму законам Кирхгофа.

Количество независимых уравнений составленных по первому закону Кирхгофа всегда на единицу меньше чем узлов, Т. к. признаком независимости является наличие в каждом уравнении хотя бы одного нового тока.

Так как число ветвей M всегда больше, чем узлов К , То недостающее количество уравнений составляется по второму закону Кирхгофа для замкнутых независимых контуров, Т. е. чтобы в каждое новое уравнение входила хотя бы одна новая ветвь.

В нашем примере количество узлов равно четырем – A , B , C , D , следовательно, составим только три уравнения по первому закону Кирхгофа, для любых трех узлов:

Для узла A: I1+I5+I6=0

Для узла B: I2+I4+I5=0

Для узла C: I4+I3+I6=0

По второму закону Кирхгофа нам нужно составить также три уравнения:

Для контура A , C ,В, А: I 5 · R 5 I 6 · R 6 I 4 · R 4 =0

Для контура D ,A ,В, D : I 1 · R 1 I 5 · R 5 I 2 · R 2 =Е1-Е2

Для контура D ,В, С, D : I 2 · R 2 + I 4 · R 4 + I 3 · R 3 =Е2

Решая систему из шести уравнений можно найти токи всех участков схемы.

Если при решении этих уравнений токи отдельных ветвей получатся отрицательными, то это будет указывать, что действительное направление токов противоположно произвольно выбранному направлению, но величина тока будет правильной.

Уточним теперь порядок расчета:

1) произвольно выбрать и нанести на схему положительные направления токов ветвей;

2) составить систему уравнений по первому закону Кирхгофа – количество уравнений на единицу меньше чем узлов;

3) произвольно выбрать направление обхода независимых контуров и составить систему уравнений по второму закону Кирхгофа;

4) решить общую систему уравнений, вычислить токи, и, в случае получения отрицательных результатов, изменить направления этих токов.

Пример 2 . Пусть в нашем случае (рис. 2.2.) R 6 = ∞ , что равносильно обрыву этого участка цепи (рис. 2.3). Определим токи ветвей оставшейся цепи. вычислим баланс мощностей, если E 1 =5 В, E 2 =15 B, R 1 =3 Ом, R 2 = 5 Ом, R 3 =4 Ом, R 4 =2 Ом, R 5 =3 Ом.

Рис. 2.3 Схема к решению задачи.

Решение. 1. Выберем произвольно направление токов ветвей, их у нас три: I 1 , I 2 , I 3 .

2. Составим только одно независимое уравнение по первому закону Кирхгофа, т. к. в схеме лишь два узла В и D .

Для узла В : I 1 + I 2 I 3

3. Выберем независимые контуры и направление их обхода. Пусть контуры ДАВД и ДВСД будем обходить по часовой стрелке:

E1-E2=I1(R1 + R5) — I2·R2,

E2=I2 · R2 + I3 · (R3 + R4).

Подставим значения сопротивлений и ЭДС.

I 1 + I 2 I 3 =0

I 1 +(3+3)- I 2 · 5=5-15

I 2 · 5+ I 3 (4+2)=15

Решив систему уравнений, вычислим токи ветвей.

I 1 =- 0,365А; I 2 = I 22 I 11 = 1,536А; I 3 =1,198А.

Как проверку правильности решения составим баланс мощностей.

Σ EiIi= Σ Iy2·Ry

E1·I1 + E2·I2 = I12·(R1 + R5) + I22·R2 + I32·(R3 + R4);

5(-0,365) + 15·1,536 = (-0,365)2·6 + 1,5632·5 + 1,1982·6

1,82 + 23,44 = 0,96 + 12,20 + 8,60

21,62 ≈ 21,78.

Расхождения незначительны, следовательно решение верно.

Одним из главных недостатков этого метода является большое количество уравнений в системе. Более экономичным при вычислительной работе является Метод контурных токов .

2.3 Метод контурных токов.

При расчете Методом контурных токов полагают, что в каждом независимом контуре течет свой (условный) Контурный ток . Уравнения составляют относительно контурных токов по второму закону Кирхгофа. Таким образом количество уравнений равно количеству независимых контуров.

Реальные токи ветвей определяют как алгебраическую сумму контурных токов каждой ветви.

Рассмотрим, например, схему рис. 2.2. Разобьем ее на три независимых контура: СВАС ; АВ D А ; ВС D В и условимся, что по каждому из них проходит свой контурный ток, соответственно I 11 , I 22 , I 33 . Направление этих токов выберем во всех контурах одинаковым по часовой стрелке, как показано на рисунке.

Сопоставляя контурные токи ветвей, можно установить, что по внешним ветвям реальные токи равны контурным, а по внутренним ветвям они равны сумме или разности контурных токов:

I1 = I22, I2 = I33 — I22, I3 = I33,

I4 = I33 — I11, I5 = I11 — I22, I6 = — I11.

Следовательно, по известным контурным токам схемы легко можно определить действительные токи ее ветвей.

Для определения контурных токов данной схемы достаточно составить только три уравнения для каждого независимого контура.

Составляя уравнения для каждого контура необходимо учесть влияние соседних контуров токов на смежные ветви:

I11(R5 + R6 + R4) — I22·R5 — I33·R4 = O,

I22(R1 + R2 + R5) — I11·R5 — I33·R2 = E1 — E2,

I 33 (R 2 + R 3 + R 4 ) — I 11 · R 4 I 22 · R 2 = E 2 .

Итак, порядок расчета методом контурных токов выполняется в следующей последовательности:

1. установить независимые контуры и выбрать направления в них контурных токов;

2. обозначить токи ветвей и произвольно дать им направления;

3. установить связь действительных токов ветвей и контурных токов;

4. составить систему уравнений по второму закону Кирхгофа для контурных токов;

5. решить систему уравнений, найти контурные токи и определить действительные токи ветвей.

Пример 3. Решим задачу (пример 2) методом контурных токов, исходные данные те же.

1. В задаче возможны только два независимых контура: выберем контуры АВ D А и ВС D В , и примем направления контурных токов в них I 11 и I 22 по часовой стрелке (рис. 2.3).

2. Действительные токи ветвей I 1 , I 2, I 3 и их направления также показаны на (рис 2.3).

3. связь действительных и контурных токов:

I 1 = I 11 ; I 2 = I 22 I 11 ; I 3 = I 22

4. Составим систему уравнений для контурных токов по второму закону Кирхгофа:

E1 — E2 = I11·(R1 + R5 + R2) — I22·R2

E2 = I22·(R2 + R4 + R3) — I11·R2;

5-15=11·I 11 -5·I 22

15=11·I 22 -5·I 11 .

Решив систему уравнений получим:

I 11 = -0,365

I 22 = 1,197, тогда

I 1 = -0,365; I 2 = 1,562; I 3 = 1,197

Как видим реальные значения токов ветвей совпадают с полученными значениями в примере 2.

2.4 Метод узлового напряжения (метод двух узлов).

Часто встречаются схемы содержащие всего два узла; на рис. 2.4 изображена одна из таких схем.

Рис 2.4. К расчету электрических цепей методом двух узлов.

Наиболее рациональным методом расчета токов в них является Метод двух узлов.

Под Методом двух узлов понимают метод расчета электрических цепей, в котором за искомое напряжение (с его помощью затем определяют токи ветвей) принимают напряжение между двумя узлами А и В схемы – U АВ .

Напряжение U АВ может быть найдено из формулы:

U АВ =

В числителе формулы знак «+», для ветви содержащей ЭДС, берется если направление ЭДС этой ветви направлено в сторону повышения потенциала, и знак «-» если в сторону понижения. В нашем случае, если потенциал узла А принять выше потенциала узла В (потенциал узла В принять равным нулю), Е1 G 1 , берется со знаком «+», а Е2· G 2 со знаком «-»:

U АВ =

Где G – проводимости ветвей.

Определив узловое напряжение, можно вычислить токи в каждой ветви электрической цепи:

I К =(Ек- U АВ ) G К .

Если ток имеет отрицательное значение, то действительное его направление является противоположным обозначенным на схеме.

В этой формуле, для первой ветви, т. к. ток I 1 совпадает с направлением Е1 , то ее значение принимается со знаком плюс, а U АВ со знаком минус, т. к. направлено навстречу току. Во второй ветви и Е2 и U АВ направлены навстречу току и берутся со знаком минус.

Пример 4 . Для схемы рис. 2.4 если Е1= 120В, Е2=5Ом, R1=2Ом, R2=1Ом, R3=4Ом, R4=10Ом.

UАВ=(120·0,5-50·1)/(0,5+1+0,25+0,1)=5,4 В

I1=(E1-UАВ)·G1= (120-5,4)·0,5=57,3А;

I2=(-E2-UАВ)·G2 = (-50-5,4)·1 = -55,4А;

I3=(О-UАВ)·G3 = -5,4·0,25 = -1,35А;

I4=(О-UАВ)·G4 = -5,4·0,1 = -0,54А.

2.5. Нелинейные цепи постоянного тока и их расчет.

До сих пор мы рассматривали электрические цепи, параметры которых (сопротивления и проводимости) считались не зависящими от величины и направления проходящего по ним тока или приложенного к ним напряжения.

В практических условиях большинство встречающихся элементов имеют параметры зависящие от тока или напряжения, вольт-амперная характеристика таких элементов имеет нелинейный характер (рис. 2.5),такие элементы называются Нелинейными . Нелинейные элементы широко используются в различных областях техники (автоматики, вычислительной техники и других).

Рис. 2.5. Вольт-амперные характеристики нелинейных элементов:

1 — полупроводникового элемента;

2 — термосопротивления

Нелинейные элементы позволяют реализовать процессы которые невозможны в линейных цепях. Например, стабилизировать напряжение, усиливать ток и другие.

Нелинейные элементы бывают управляемыми и неуправляемыми. Неуправляемые нелинейные элементы работают без влияния управляющего воздействия (полупроводниковые диоды, термосопротивления и другие). Управляемые элементы работают под влиянием управляющего воздействия (тиристоры, транзисторы и другие). Неуправляемые нелинейные элементы имеют одну вольт-амперную характеристику; управляемые – семейство характеристик.

Расчет электрических цепей постоянного тока чаще всего производят графическими методами, которые применимы при любом виде вольт-амперных характеристик.

Последовательное соединение нелинейных элементов.

На рис. 2.6 приведена схема последовательного соединения двух нелинейных элементов, а на рис. 2.7 их вольтамперные характеристики – I (U 1 ) и I (U 2 )

Рис. 2.6 Схема последовательного соединения

Нелинейных элементов.

Рис. 2.7 Вольтамперные характеристики нелинейных элементов.

Построим вольт-амперную характеристику I (U ), выражающую зависимость тока I в цепи от приложенного к ней напряжения U . Так как ток обоих участков цепи одинаков, а сумма напряжений на элементах равна приложенному (рис. 2.6) U = U 1 + U 2 , то для построения характеристики I (U ) достаточно просуммировать абсциссы заданных кривых I (U 1 ) и I (U 2 ) для определенных значений тока. Пользуясь характеристиками (рис. 2.6) можно решить различные для этой цепи задачи. Пусть, например, задана величина приложенного к току напряжения U и требуется определить ток в цепи и распределение напряжений на ее участках. Тогда на характеристике I (U ) отмечаем точку А соответствующую приложенному напряжению U и проводим от нее горизонталь пересекающую кривые I (U 1 ) и I (U 2 ) до пересечения с осью ординат (точка D ), которая показывает величину тока в цепи, а отрезки В D и С D величину напряжения на элементах цепи. И наоборот по заданному току можно определить напряжения как общее, так и на элементах.

Параллельное соединения нелинейных элементов.

При параллельном соединении двух нелинейных элементов (рис. 2.8) с заданными вольт-амперными характеристиками в виде кривых I 1 (U ) и I 2 (U ) (рис. 2.9) напряжение U является общим, а ток I в неразветвленной части цепи равен сумме токов ветвей:

I = I 1 + I 2

Рис. 2.8 Схема параллельного соединения нелинейных элементов.

Поэтому для получения общей характеристики I(U) достаточно для произвольных значений напряжения U на рис. 2.9 просуммировать ординаты характеристик отдельных элементов.

Рис. 2.9 Вольт-амперные характеристики нелинейных элементов.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Компьютеры и современные гаджеты